
 Source Update Capture in Information Agents

Naveen Ashish*, Deepak Kulkarni and Yao Wang
* USRA Research Institute for Advanced Computer Science

NASA Ames Research Center
MS 269/3 Moffett Field CA 94035

{ashish, kulkarni, yxwang}@email.arc.nasa.gov

Abstract
In this paper we present strategies for successfully
capturing updates at Web sources. Web-based
information agents provide integrated access to
autonomous Web sources that can get updated. For many
information agent applications we are interested in
knowing when a Web source to which the application
provides access, has been updated. We may also be
interested in capturing all the updates at a Web source
over a period of time i.e., detecting the updates and, for
each update retrieving and storing the new version of
data. Previous work on update and change detection by
polling does not adequately address this problem. We
present strategies for intelligently polling a Web source
for efficiently capturing changes at the source.

1 Introduction
An important issue with internet information agents is
that of addressing the problem of updates at the remote
Web sources being integrated. Information agents and
other Web-based information extraction and integration
systems provide integrated access to data residing in
different Web sources. These Web sources are
autonomous and the data on the Web pages at these
sources may change. For performance optimization,
information agents often cache or materialize data from
the remote Web sources locally. When updates or
changes occur at Web sources, the cached data becomes
inconsistent with the original data. To avoid providing
the user with stale or inconsistent data, the information
agent must update the cache as changes take place at the
original Web sources. The information agent may also
require access to the different updated versions of data at
a Web source over a period of time. For instance the
main headline story at the CNN news site
(www.cnn.com) gets updated every hour or so (the same
news story may get updated or a different news item
appears as the headline news) and an information agent
may require access to all the different headline news
stories [we refer to the distinct data items (i.e., stories) as
versions] that appeared as headline news over a
particular day. We use the term capture for the process
of detecting an update and then retrieving and storing
the new updated version of the data from a source. The
time (and frequency) of changes at many Web sources
are not known in advance. As a result, the information
agent must poll the Web source(s) to check for updates
and changes. To minimize the probability of missing an

update we must poll the sources very frequently.
However this high polling frequency may not be feasible
due to limited network and computational resources. In
fact many sources would not allow polling the source at
a high frequency as this causes an undesirable load on
their Web server. In this paper we present the initial
results of our work in progress on capturing changes at a
Web source while polling the source only a limited
number of times. Our approach is based on our
observation of regularities of update times at many
autonomous Web sources.

The problem of detecting changes at a source and
synchronizing the local copy has been studied in many
contexts such as Web data sources, Web proxy servers,
Internet crawlers and client-server database systems.
(Cho and Garcia-Molina 2000) describes an approach to
refreshing the local copy of an autonomous data source
to keep the copy up-to-date. (Cho and Ntoulas 2002)
presents a sampling-based strategy for keeping local
copies of data up-to-date in a World Wide Web or data-
warehousing environment. (Barish and Obraczka 2000)
presents a survey of a variety of caching techniques for
the World Wide Web. (Bright and Raschid 2002)
presents a Web caching approach where a trade off can
be made between the recency of the retrieved
information versus the latency to retrieve it. Finally there
is work on synchronizing updates in data warehousing
(Labrinidis and Roussopoulos May 2000) and in client
server database system (Gal and Eckstein 2001)
environments. The above efforts have provided
approaches for optimizing various important aspects in
synchronizing cached data such as minimizing the “age”
of objects (i.e., ensuring that the data is refreshed very
soon after it is updated), maximizing the average
“freshness” (i.e, ensuring that most of the data is
consistent with that in the original source) etc. However,
an important problem that has not been addressed by
existing approaches is that of capturing all the changes
over a period of time. As another example, a Web source
that we have extensively studied is a source in the
aviation domain – the Digital Automatic Terminal
Information services (D-ATIS) messages published at
the ARINC Website1 where air traffic messages are
published at the rate of 1-2 messages per hour. A new

1 http://www.arinc.com/products/voice_data_comm/d_atis.html

message overwrites the existing message at the Web site.
In one of our applications, the information agent requires
access to all the different messages (versions) published
over a particular day. In this application, the information
agent provides integrated access of the ATIS data with
other aviation related data sources (such as radar data,
weather data etc.) and some typical queries (performed
by aviation safety analysts) require access to all the
distinct ATIS messages over an entire day. Capturing all
versions of data from a Web source is also important in
archival applications such as Web archive (Cho 2003)
and the Wayback machine (http://www.archive.org/)
where we wish to archive all the different versions of an
entire Web source as it changes over time. Existing work
on polling and change detection addresses issues such as
optimizing the age or freshness of cached data items but
does not provide a way to effectively capture changes at
a Web source while polling it a limited number of times.
In this paper we present an approach to capturing all (or
the maximum possible) updates at a Web source over a
period of time with limited resource constraints i.e., we
will poll the source only a limited number of times. Our
approach is motivated by and based on our observation
that for many sources, though autonomous, the updates
not only occurs with a regular frequency but also
(mostly) at or around certain times or between certain
time intervals. We must finally also mention that there is
an entire body of work in the area of time series analysis
and statistical forecasting(Brockwell, Davis et al. 2002)
on making predictions about future events or trends
using various techniques. The focus of our work is not on
developing new forecasting techniques, rather it is on
formalizing and developing solutions for the version
capture problem in a web information agent context,
which has not been explored before.

The rest of this paper is organized as follows. In section
2 we formalize the problem and our optimization goal. In
section 3 we present our observations of the distributions
of updates at Web sources. We then present strategies for
polling the Web sources and synchronizing data based on
the fact that the update distributions follow regularities at
many sources. We also present experimental results
supporting the validity of our hypotheses and
effectiveness of the approach. Finally in section 4 we
discuss on going work and conclusion.

2. Formalizing the Problem
We first define some metrics that will allow us to state
our goal of effectively capturing updates formally. The
metrics also will be a means to evaluate the effectiveness
of various strategies for capturing updates. We then
present a formal statement of the change capture
optimization problem.

2.1 Metrics
(a) Change Recall: We introduce the Change Recall
metric, which is a measure of how successful we have

been in capturing the changes at a source. Formally,
Change Recall is defined as the number of changed items
downloaded, over the total number of changed items in a
particular time period. For instance if the ATIS source
was updated 30 times a particular day and we captured
27 of these, then the Change Recall would be 27/30 =
0.9. Ideally we would want the Change Recall to be 1.
This may not be possible given resource constraints, so
our goal is to maximize Change Recall.

(b) Freshness and Age
The Freshness and Age metrics were defined in (Cho and
Ntoulas 2002). The freshness of a cached data item F is
defined as:
F = 1 if the cached data item is up to date
 = 0 otherwise

The age A of an object is defined as:
A = 0 if the cached object is up to date
 = t - tu if the cached object is not up to date, where t=
current time and tu = time of last update

2.2 Problem Statement
If we are polling a source for detecting updates, and
polling with limited frequency, the particular times at
which we poll can significantly affect the Change Recall.
For instance, consider again the updates at the ATIS
source, where the update times are as shown in Table 1.

1:05, 1:14, 2:04, 2:15, 3:03, 3:14 ….

Table 1. Update Time Log

 Let’s say that we have the constraint that we can poll the
source only at most 2 times per hour. A naive strategy of
polling the source once at the turn of every hour and
once again at 30 min past the hour (i.e., poll at 1pm,
1:30pm 2pm, 2:30pm ) would cause us to miss half
the updates and result in a poor Change Recall of about
0.5. A more intelligent strategy would be to poll the
source at 5 minutes past and 15 minutes past the hour
(1:05, 1:15, 2:05, 2:15 ...). With this strategy we would
capture almost all the updates and achieve a Change
Recall of close to 1.0 The key problem is thus of
deciding at what times to poll a source such that the
Change Recall is maximized. We define this formally.

Definition: Polling Strategy
A "polling strategy" is defined as a tuple <T, S> where T
is a time period (such as an hour, day month etc.) over
which the polling times repeat in a cycle and,
S = {S1,S2,, Sm} is a set of times at which we poll the
source within each time period T.
So a strategy defined by <hour, {5,15,45}> implies that
in each hour we poll 3 times, at 5 minutes past, 15
minutes and 45 minutes past the hour.

We now state the Change Recall optimization problem
formally:

Given:
O = a Web source
T = time period
N = maximum number of times we can poll S in the time
period T
H = previous history of updates at the source
Generate:
A polling strategy <T,S> such that the expected Change
Recall is maximized, where we poll at most N times in
the time period T.

Note that in certain applications we may also be
interested in optimizing other metrics i.e., minimizing
the average age or maximizing the freshness. A polling
strategy that maximizes Change Recall, can also be used
to minimize the average age of cached data items and in
fact performs better than existing strategies in many
cases !

3. Polling Strategy
We make use of the historical data for update times at a
Web source to estimate the probability of missing
updates with any polling strategy. Like existing
approaches, our approach is based on the assumption that
the historical pattern of updates (over an appropriate time
period) at a Web source is a good predictor of the future
pattern of updates at that source. We thus first talk about
our observations of update time distributions at Web
sources and then present approaches for generating an
optimal polling strategy.

3.1 Update Time Distributions
While a source may change anytime, the times of
updates at many sources do follow certain regular
distributions . In (Cho and Ntoulas 2002) it was shown
that the Poisson process effectively models change at the
Web sources they sampled. However there is a
difference in behavior between all Web pages of the
entire Web and a particular set of Web pages. While
hundreds of millions of Web pages in an entire set can be
considered to have been changed by a random process on
average, for a particular set of pages as well as different
scales of study, the randomness of the change
occurrences has to be addressed before we can make
confident predictions about the polling. While the
Poisson process may model updates of web sources in
general, specific sources may exhibit update distributions
that are distinctly different. It is our observation that for
many sources we can use more accurate models to fit the
distribution of update times at a Web source. The fact
that a source gets updated according to some particular
distribution and knowledge of this distribution can be
exploited to come up with a smart strategy for polling
that source.
Our second observation is that the distribution of updates

of a web page would depend on semantics of the web
page itself. For example, the likelihood of updates to the
CNN.com home page in a short time is higher if the page
is reporting a breaking story or a very rapidly changing
event.

So the update distribution is indeed helpful in deciding a
good polling strategy. The problem is to come up with an
approach to generate such a strategy automatically given
the update distribution. We now describe two alternative
approaches to generating the optimal polling strategy.
 (1) Empirical Approach: We can systematically consider
all possible polling times for an interval of interest and
can use the historical information to compute how many
changes would have been missed if we had used
particular polling strategy. If this can be done in a
computationally efficient manner, the approach can be
used to find an optimal strategy.
(2) Theoretical Modeling Approach: We can model the
update patterns using an appropriate probability
distribution and do analysis based on this probability
distribution to infer the best polling strategy. This
approach has been taken in previous work and is
computationally efficient.

3.1.1 Empirical Approach
Suppose {T1, T2, … Ts} is the set of time points at which
one would consider polling in the interval T, where T(i +

1) > Ti. For example, {1, 2, … 60} (minutes) is the set of
time points (s=60 time points) at which one would
consider polling ATIS data in a typical hour (T = 60
minutes). We define a probability function,
NumMisses(Ti, k,1) as the number of missed updates in
the interval (Ti, Ti+k) if we poll at Ti and Ti+k and
additionally poll l times in the interval (Ti, Ti+k) using an
optimal strategy. Let PollingSet(Ti,k,l) be the
corresponding set of time points at which one would poll
using the optimal strategy. Also, N is the maximum
number of times we can poll in the interval T as defined
in the problem statement. NumMisses(Ti, k, 0) can
generally be derived from historical data for all possible
values of i and k.

We propose the following algorithm for computing the
NumMisses function efficiently for all possible l of
interest:

for l = 1 to (N-2)
 for i = 1 to s
 for k = 1 to s
 NumMisses(Ti,k,l) = Min j=1 to (k-1)(NumMisses(Ti,j,1)

 + NumMisses(Ti + j , k-j, l – 1))

 Let jmin be value of j for which above
 expression is minimum

 PollingSet(Ti,k,l)=PollingSet(Ti,k,1) U

 PollingSet(Ti + jmin,k-jmin,l – 1)
 End for
 End for
End for

The set of time points in the best polling strategy in the
interval T is PollingSet(Timin, kmin, N-2) where imin and
kmin are i and k for which NumMisses(Ti,k,N-2) is
minimum.

In the above algorithm, NumMisses is computed for
o(s*s*N) input values. Each computation of
NumMisses(Ti ,k,l) and PollingSet(Ti ,k,l) can be done in
at most s steps. So the above algorithm can compute
NumMisses(Ti, k , l) and PollingSet(Ti ,k,l) using at
most s^3* N computations for all i, k and l. As the final
step involves computing the minimum of s^2 values, this
algorithm can compute the best polling strategy in O(s^
3* N) steps.

Using the above algorithm we thus systematically
consider all possible combinations of polling times given
the polling frequency and determine which is the best
polling strategy. This approach is likely to be practical
for small values of s, but not for large values of s. In the
next section, we will describe another approach that can
be used even for large values of s.

3.1.2 Theoretical Modeling Approach
Generating the optimal polling strategy by exhaustive
search may be prohibitively expensive in many cases i.e.,
when there are a very large number of possible
combinations of possible polling times and searching
through the entire space is expensive. We present an
efficient algorithm for determining a near optimal polling
strategy. The algorithm is based on the assumption that
the probability density function representing the update
probability of a particular data item on a Web source
being updated is uniform in small time intervals. This
assumption is reasonable but not completely accurate for
many Web sources. Thus the algorithm is not guaranteed
to find an optimal polling strategy but instead finds a
near optimal strategy that is almost as good as the
optimal strategy.

The algorithm is based on a couple of very elementary
characteristics of updates in different kinds of time
intervals. First, there may be intervals where only at most
one update can occur. There is no need to poll multiple
times in such intervals, rather one can poll just once, at
the end of the interval. Next, for intervals where two or
more updates may occur any time we need to poll as
many times as we can. For such intervals, if we know
how the probability of missing an update changes as a
function of the number of times we poll in that interval,
we can systematically determine how many times to poll
in each such interval (given a limited number of total
polling times).
. There are thus two primary steps in the algorithm:

(i) Find the time intervals where there are zero
or at most one updates (we call such
intervals single update intervals) and assign
polls to those intervals appropriately.

(ii) For the remaining intervals i.e., intervals
where 2 or more updates may occur (we
call such intervals multiple update
intervals), and assign the remaining polls
appropriately.

Consider again the ATIS messages. Let’s say at most 3
messages are published (i.e., updated) every hour. We
tag these messages (the first, second and third) as A, B
and C. Say the update probability distributions
(represented by probability density functions) of each of
these messages is as shown in Fig 2 which shows a plot
of update probability distributions versus time (in
minutes). A is updated only sometime between t=5 and
t=15 min etc. If we poll only thrice an hour, at t=15,t=35
and t=50 we will capture all the updates A,B and C. This
is possible because the probability distributions of A,B
and C do not overlap anywhere. Only at most one
message (A,B or C) can get updated in a time interval
and we simply poll once at the end of that interval. What
if the probability distributions do overlap ? For instance
consider a different distribution as shown in Fig 3. Both
A and B can get updated between t=10 and t=20 and
both B and C can get updated between t=30 and t=35.

0

0.2

0.4
0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50 55 60

A

B

C

 Fig 2. Update Probability Distributions
These are the multiple update intervals. There are also
single update intervals. For instance only A may occur
between t=5 and t=20 (so we need poll only once at the
end of this interval at t=20). Similarly we poll once at
t=10, t=30 ,t=35 and t=40. Note that there is a possibility
of missing an update in this case. Two or more updates
(A and B) could occur between t=10 and t=20 and we
will capture only one of them. Also two or more updates
(B and C) could occur between t=30 and t=35. So far we
have assigned a total of 5 polls per hour. Suppose we
could poll more than 5 times. At what times should we
poll additionally? Polling more in a multiple update
intervals decreases the probability of missing an update
in that interval. We will examine shortly as to how
exactly this probability varies with the number of times
we poll in the interval. So any additional polls should be
assigned to the multiple update intervals. But there could
be many such multiple update intervals. So how do we
relatively assign the additional polls between these
intervals ? For instance in the current example we have 2
multiple update intervals and if we had a total of 5

additional polls we could assign 1 additional poll to the
first multiple update interval and 4 to the second or 2 to
the first and 3 to the second etc. Which assignment of
these minimizes the total probability of missing an
update? Having a model of the update probability
distributions of the updates in the different multiple
update intervals will allow us to determine the
probability of missing updates for various assignments.
In general an update distribution may be of any form
within an update interval. However for many sources we
can approximate the probability density function for an
update distribution to be uniform in that interval, for
intervals that are sufficiently small. For such cases, i.e.,
where approximating the probability distribution as
uniform in small intervals is reasonable, we can evaluate
the probability of missing updates for different
assignments and thus find the optimal assignment. We
describe how we do this below. Let’s say we have i such
multiple update intervals. Suppose we poll Ki times in an
interval i. What is the probability of missing an update in
the interval i now? We poll at uniform sub-intervals
within interval i as shown in Fig 4. We will miss an
update in interval i if and only if the two updates occur
together in any one of the Ki sub-intervals.

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50 55 60

time (minutes)

pr
ob

ab
il

it
y A

B

C

Fig 3. Update Probability Distributions

The probability of both updates occurring in a particular
sub interval is given by:
(PrA t/Ki) * (PrB t/Ki) = PrAPrBt2/Ki

2

Fig 4. Polling in a multiple update interval.

where PrA and PrB are the probability densities of A and
B in that interval respectively. The probability that two
updates occur together in any of the Ki sub-intervals is
simply:
Ki*(PrA t/Ki) * (PrB t/Ki) = PrAPrBt2/Ki

This expression is of the form Cit
2/Ki where Ci=PrAPrB is

a constant. Although we have illustrated the above for
the case where 2 updates can occur in an interval, the
expression representing the probability of missing an
update is of the form where 2 or even more updates can
occur in an interval.
Now the probability of missing any update in any of the i
multiple update intervals is:
Σn i=1 Cit

2/Ki

Note that we take all multiple updates to be of equal
length i.e., t. If the multiple update intervals are not
originally of equal length we can sub divide them into
intervals of length of the greatest common divisor of the
lengths of the (original) multiple update intervals.
We have to find Ki such that ΣKi=K
and Σn i=1 Ci/Ki

is minimized. This is a well known optimization problem
and the minima lies when:
C1/K1

2=C2/K2
2 = …… Cn/Kn

2 (condition I)
 Thus we simply assign the Kis according to the above
equation. The algorithm to find a (near) optimal polling
strategy using theoretical modeling can be stated as
follows:

1. Find the update probability
distributions of the various
updates.

2. Find the single update
intervals.

a. Poll once at the beginning
and once at the end of
each such interval.

3. Find the multiple update
intervals.

a. Assign the remaining polls
to the multiple update
intervals in the
proportion defined by
condition I above

While we do not present a proof here, the above
algorithm is linear in the number of possible polling
points one would consider in an interval.

3.1.3 Experimental Results
We evaluated the effectiveness of our approaches by
measuring the Change Recall from the ATIS Web server
using various strategies. We used real historical update
time data collected over several months from the ATIS
Web server and tested the strategies for Change Recall
over the actual ATIS source. We evaluated three
different strategies:

(i) A naïve uniform strategy where given N
polls in a time period (an hour in this case)
we simply poll N times at uniform intervals
in the time period.

(ii) An optimal polling strategy generated by
exhaustive search.

sub polling Ki times
interval

i th interval
 t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

Pol l ing f r equency (ti mes/ hr)

Naive (unif orm)

Exhaust ive search

Theoret ical modeling

Fig 5. Effectiveness of strategies.

(iii) A near optimal polling strategy generated
by theoretical modeling.

As we can see in Fig 5 above, the optimal polling
strategies (both by exhaustive search and theoretical
modeling) result in significantly better Change Recall
than the naïve uniform strategy. The improvement is
more significant when the polling frequency is less.
Thus exploiting the update time distribution indeed helps
in achieving a better Change Recall versus existing
sampling based approaches that would result in Change
Recall obtained by the naïve (uniform) approach. Also
the theoretical modeling strategy performs almost as well
as the exhaustive search strategy. So, this indicates that
in cases where the exhaustive search strategy is
computationally expensive, finding a near optimal
strategy by theoretical modeling is a good alternative.
We must note that in some other scenarios the naïve
strategy may perform significantly worse. For instance
suppose we had an update pattern that was of the form
{1:00, 1:05, 1:10, 1:15, 2:00, 2:04, 2:09, 2:15,3:01,3:05
……} With a naive strategy with N=4 (i.e., polling at
1:00,1:15,1:30,2:00, …) we would get a very poor
Change Recall of ~ 0.25 whereas with the optimal
strategies we would get a Change Recall of close to 1.0
when polling 4 times an hour.

4. Work in Progress and Conclusion
In this paper, we introduced change recall as an
important metric to be considered in remote data source
synchronization. Then, we noted that it is possible to
utilize knowledge of specific update probability
distributions and their dependence of domain semantics
in devising a polling strategy. We discussed two
different polling strategies we are using in our
applications. Based on preliminary results, these
strategies are more effective for capturing changes than
existing strategies, which do not focus on the change

capture problem in particular and are based solely on the
frequency of updates. There are several tasks and issues
that we are working on right now, namely:

• More extensively studying the update patterns at
a variety of different autonomous Web sources.

• Testing the effectiveness of the polling
strategies with many other Web sources.

• Extending the theoretical modeling approach to
cases where the uniform distribution
approximation is not reasonable.

• Testing the effectiveness of our strategies in
optimizing factors other than change capture,
such as age and freshness of cached objects.

• Utilizing the semantics of the data to predict the
probability of the next update and incorporating
this knowledge in generating the polling
strategy.

Besides information agents, our change capture strategies
are also applicable to a variety of other systems such as
Web crawlers, Web proxy server caches and Web
archiving systems where it is important to synchronize
data cached from autonomous sources.
 References
Barish, G. and K. Obraczka (2000). World Wide Web

Caching:Trends and Techniques. IEEE
Communications Magazine.

Bright, L. and L. Raschid (2002). Using Latency-
Recency Profiles for Data Delivery on the Web.
Proceedings of the 28th VLDB Conference,
Hong Kong, China.

Brockwell, P., R. Davis, et al. (2002). Introduction to
Time Series and Forecasting, Springer Verlag.

Cho, J. (2003). Web History and Evolution Archiving
(WHEN).

Cho, J. and H. Garcia-Molina (2000). Synchronizing a
Database to Improve Freshness. Proceedings of
2000 ACM International Conference on
Management of Data (SIGMOD), Dallas.

Cho, J. and A. Ntoulas (2002). Effective Change
Detection Using Sampling. Proceedings of the
20th VLDB Conference, Hong Kong, China.

Gal, A. and J. Eckstein (2001). "Managing Periodically
Updated Data in Relational Databases: A
Stochastic Modeling Approach." Journal of the
ACM 48(6): 1141-1183.

Labrinidis, A. and N. Roussopoulos (May 2000).
WebView Materialization. Proceedings of the
ACM SIGMOD International Conference on
Management of Data, Dallas, TX.

